Cheatgrass invasion alters the abundance and composition of dark septate fungal communities in sagebrush steppe.

TitleCheatgrass invasion alters the abundance and composition of dark septate fungal communities in sagebrush steppe.
Publication TypeJournal Article
Year of Publication2016
AuthorsGehring, CA, Hayer, M, Flores-Renteria, L, Krohn, AL, Schwartz, E, Dijkstra, P
JournalBotany
Volume9
Issue6
Pagination481 - 491
Date Published2016
AbstractInvasive, non-native plant species can alter soil microbial communitiesin ways that contribute to their persistence. While most studies emphasize mycorrhizal fungi, invasive plants also may influence communities of dark septate fungi (DSF), which are common root endophytes that can function like mycorrhizas. We tested the hypothesis that a widespread invasive plant in the western United States, cheatgrass (Bromus tectorum L.), influenced the abundance and community composition of DSF by examining the roots and rhizosphere soils of cheatgrass and two native plant species in cheatgrass-invaded and noninvaded areas of sagebrush steppe. We focused on cheatgrass because it is negatively affected by mycorrhizal fungi and colonized by DSF. We found that DSF root colonization and operational taxonomic unit (OTU) richness were significantly higher in sagebrush (Artemisia tridentata Nutt.) and rice grass (Achnatherum hymenoides (Roem. & Schult.) Barkworth) from invaded areas than noninvaded areas. Cheatgrass roots had similar levels of DSF colonization and OTU richness as native plants. The community composition of DSF varied with invasion in the roots and soils of native species and among the roots of the three plant species in the invaded areas. The substantial changes in DSF we observed following cheatgrass invasion argue for comparative studies of DSF function in native and non-native plant species.