TY - JOUR T1 - Arthropod communities on hybrid and parental cottonwoods are phylogenetically structured by tree type: Implications for conservation of biodiversity in plant hybrid zones. JF - Ecology and evolution Y1 - 2017 A1 - Jarvis,Karl J A1 - Allan,Gerard J A1 - Craig,Ashley J A1 - Beresic-Perrins,Rebecca K A1 - Wimp,Gina A1 - Gehring,Catherine A A1 - Whitham,Thomas G AB -

Although hybridization in plants has been recognized as an important pathway in plant speciation, it may also affect the ecology and evolution of associated communities. Cottonwood species (Populus angustifolia and P. fremontii) and their naturally occurring hybrids are known to support different plant, animal, and microbial communities, but no studies have examined community structure within the context of phylogenetic history. Using a community composed of 199 arthropod species, we tested for differences in arthropod phylogenetic patterns within and among hybrid and parental tree types in a common garden. Three major patterns emerged. (1) Phylogenetic diversity (PD) was significantly different between arthropod communities on hybrids and Fremont cottonwood when pooled by tree type. (2) Mean phylogenetic distance (MPD) and net relatedness index (NRI) indicated that communities on hybrid trees were significantly more phylogenetically overdispersed than communities on either parental tree type. (3) Community distance (Dpw) indicated that communities on hybrids were significantly different than parental species. Our results show that arthropod communities on parental and hybrid cottonwoods exhibit significantly different patterns of phylogenetic structure. This suggests that arthropod community assembly is driven, in part, by plant-arthropod interactions at the level of cottonwood tree type. We discuss potential hypotheses to explain the effect of plant genetic dissimilarity on arthropod phylogenetic community structure, including the role of competition and environmental filtering. Our findings suggest that cottonwood species and their hybrids function as evolutionarily significant units (ESUs) that affect the assembly and composition of associated arthropod communities and deserve high priority for conservation.

VL - 7 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=28808554&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 15 ER - TY - JOUR T1 - Arthropod communities on hybrid and parental cottonwoods are phylogenetically structured by tree type: Implications for conservation of biodiversity in plant hybrid zones. JF - Ecology and Evolution Y1 - 2017 A1 - Jarvis, K.J. A1 - Allan, G.J. A1 - Craig, A. J. A1 - Beresic-Perrins, R. K.. A1 - G. Wimp A1 - Gehring, C.A. A1 - T. G. Whitham KW - arthropod phylogenetics KW - common garden KW - community genetics KW - community phylogenetics KW - foundation species KW - hybridization AB -

Although hybridization in plants has been recognized as an important pathway in plant speciation, it may also affect the ecology and evolution of associated communities. Cottonwood species (Populus angustifolia and P. fremontii) and their naturally occurring hybrids are known to support different plant, animal, and microbial communities, but no studies have examined community structure within the context of phylogenetic history. Using a community composed of 199 arthropod species, we tested for differences in arthropod phylogenetic patterns within and among hybrid and parental tree types in a common garden. Three major patterns emerged. (1) Phylogenetic diversity (PD) was significantly different between arthropod communities on hybrids and Fremont cottonwood when pooled by tree type. (2) Mean phylogenetic distance (MPD) and net relatedness index (NRI) indicated that communities on hybrid trees were significantly more phylogenetically overdispersed than communities on either parental tree type. (3) Community distance (D pw) indicated that communities on hybrids were significantly different than parental species. Our results show that arthropod communities on parental and hybrid cottonwoods exhibit significantly different patterns of phylogenetic structure. This suggests that arthropod community assembly is driven, in part, by plant–arthropod interactions at the level of cottonwood tree type. We discuss potential hypotheses to explain the effect of plant genetic dissimilarity on arthropod phylogenetic community structure, including the role of competition and environmental filtering. Our findings suggest that cottonwood species and their hybrids function as evolutionarily significant units (ESUs) that affect the assembly and composition of associated arthropod communities and deserve high priority for conservation.

VL - 7 UR - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551273/ IS - 15 ER - TY - JOUR T1 - G.M. Allan, and Tree genetics strongly effect forest productivity, but intraspecific diversity-productivity relationships do not. JF - FUNCTIONAL ECOLOGY DOI 1011111365243512733 Y1 - 2016 A1 - Fischer,DG A1 - Wimp,E A1 - Hersch-Green,RK A1 - Bangert,CJ A1 - LeRoy,JK A1 - Bailey,JA A1 - Schweitzer,C A1 - Dirks,SC A1 - Hart,GJ A1 - TG Whitham VL - 31 N1 - [Original String]:Fischer, D.G., G.M. Wimp, E. Hersch-Green, R.K. Bangert, C.J. LeRoy, J.K. Bailey, J.A. Schweitzer, C. Dirks, S.C. Hart, G.J. Allan, and Whitham, T.G. 2016. Tree genetics strongly effect forest productivity, but intraspecific diversity-productivity relationships do not. FUNCTIONAL ECOLOGY 31:520-529. DOI: 10.1111/1365-2435.12733 ER - TY - JOUR T1 - Genetic structure of a foundation species: scaling community phenotypes from the individual to the region. JF - Heredity Y1 - 2008 A1 - RK Bangert A1 - E V Lonsdorf A1 - Wimp,G M A1 - Shuster,S M A1 - Fischer,D A1 - Schweitzer,J A A1 - Allan,G J A1 - JK Bailey A1 - Whitham,T G KW - Animals KW - biodiversity KW - Ecosystem KW - Environment KW - Populus KW - Trees AB -

Understanding the local and regional patterns of species distributions has been a major goal of ecological and evolutionary research. The notion that these patterns can be understood through simple quantitative rules is attractive, but while numerous scaling laws exist (e.g., metabolic, fractals), we are aware of no studies that have placed individual traits and community structure together within a genetics based scaling framework. We document the potential for a genetic basis to the scaling of ecological communities, largely based upon our long-term studies of poplars (Populus spp.). The genetic structure and diversity of these foundation species affects riparian ecosystems and determines a much larger community of dependent organisms. Three examples illustrate these ideas. First, there is a strong genetic basis to phytochemistry and tree architecture (both above- and belowground), which can affect diverse organisms and ecosystem processes. Second, empirical studies in the wild show that the local patterns of genetics based community structure scale up to western North America. At multiple spatial scales the arthropod community phenotype is related to the genetic distance among plants that these arthropods depend upon for survival. Third, we suggest that the familiar species-area curve, in which species richness is a function of area, is also a function of genetic diversity. We find that arthropod species richness is closely correlated with the genetic marker diversity and trait variance suggesting a genetic component to these curves. Finally, we discuss how genetic variation can interact with environmental variation to affect community attributes across geographic scales along with conservation implications.

VL - 100 SN - 0018-067X UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=17047690&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 2 ER - TY - CHAP T1 - Host plants mediate ant-aphid mutualisms and their effects on community structure and diversity T2 - Ecological communities: plant mediation in indirect interaction webs. Y1 - 2007 A1 - Wimp,GM A1 - TG Whitham ED - Ohgushi,T ED - Craig,TP ED - Price,PW JF - Ecological communities: plant mediation in indirect interaction webs. PB - Cambridge University Press CY - New York, NY, USA ER - TY - JOUR T1 - Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure. JF - Molecular ecology Y1 - 2007 A1 - Wimp,G M A1 - Wooley,S A1 - RK Bangert A1 - Young,W P A1 - Martinsen,G D A1 - Keim,P A1 - Rehill,B A1 - R L Lindroth A1 - Whitham,T G KW - Animals KW - Arthropods KW - DNA, Plant KW - Ecosystem KW - Genetics, Population KW - Plant Extracts KW - Polymorphism, Restriction Fragment Length KW - Population Density KW - Population Dynamics KW - Populus KW - Seasons AB -

With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

VL - 16 SN - 0962-1083 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=17927708&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 23 ER - TY - JOUR T1 - Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. JF - Evolution; international journal of organic evolution Y1 - 2006 A1 - Shuster,S M A1 - E V Lonsdorf A1 - Wimp,G M A1 - JK Bailey A1 - Whitham,T G KW - Animals KW - Arthropods KW - Computer Simulation KW - Environment KW - Evolution, Molecular KW - Genetic Variation KW - North America KW - Phenotype KW - Populus KW - Selection, Genetic KW - Trees AB -

The evolutionary analysis of community organization is considered a major frontier in biology. Nevertheless, current explanations for community structure exclude the effects of genes and selection at levels above the individual. Here, we demonstrate a genetic basis for community structure, arising from the fitness consequences of genetic interactions among species (i.e., interspecific indirect genetic effects or IIGEs). Using simulated and natural communities of arthropods inhabiting North American cottonwoods (Populus), we show that when species comprising ecological communities are summarized using a multivariate statistical method, nonmetric multidimensional scaling (NMDS), the resulting univariate scores can be analyzed using standard techniques for estimating the heritability of quantitative traits. Our estimates of the broad-sense heritability of arthropod communities on known genotypes of cottonwood trees in common gardens explained 56-63% of the total variation in community phenotype. To justify and help interpret our empirical approach, we modeled synthetic communities in which the number, intensity, and fitness consequences of the genetic interactions among species comprising the community were explicitly known. Results from the model suggest that our empirical estimates of broad-sense community heritability arise from heritable variation in a host tree trait and the fitness consequences of IGEs that extend from tree trait to arthropods. When arthropod traits are heritable, interspecific IGEs cause species interactions to change, and community evolution occurs. Our results have implications for establishing the genetic foundations of communities and ecosystems.

VL - 60 SN - 0014-3820 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=16817539&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 5 ER - TY - JOUR T1 - A framework for community and ecosystem genetics: from genes to ecosystems. JF - Nature reviews. Genetics Y1 - 2006 A1 - Whitham,Thomas G A1 - JK Bailey A1 - Jennifer A Schweitzer A1 - Shuster,Stephen M A1 - RK Bangert A1 - LeRoy,Carri J A1 - Lonsdorf,Eric V A1 - Allan,Gery J A1 - DiFazio,Stephen P A1 - Potts,Brad M A1 - Fischer,Dylan G A1 - Gehring,Catherine A A1 - Lindroth,Richard L A1 - Jane C Marks A1 - Stephen C Hart A1 - Wimp,Gina M A1 - Wooley,Stuart C KW - Animals KW - Ecosystem KW - Genetics, Population KW - Humans KW - Plants AB -

Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.

VL - 7 SN - 1471-0056 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=16778835&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 7 ER - TY - JOUR T1 - From genes to geography: a genetic similarity rule for arthropod community structure at multiple geographic scales. JF - Molecular ecology Y1 - 2006 A1 - RK Bangert A1 - Allan,G J A1 - Turek,R J A1 - Wimp,G M A1 - Meneses,N A1 - Martinsen,G D A1 - Keim,P A1 - Whitham,T G KW - Animals KW - Arthropods KW - biodiversity KW - Genetic Variation KW - Genetics, Population KW - Models, Genetic KW - Populus KW - Rivers KW - Southwestern United States AB -

We tested the hypothesis that leaf modifying arthropod communities are correlated with cottonwood host plant genetic variation from local to regional scales. Although recent studies found that host plant genetic composition can structure local dependent herbivore communities, the abiotic environment is a stronger factor than the genetic effect at increasingly larger spatial scales. In contrast to these studies we found that dependent arthropod community structure is correlated with both the cross type composition of cottonwoods and individual genotypes within local rivers up to the regional scale of 720,000 km(2) (Four Corner States region in the southwestern USA). Across this geographical extent comprising two naturally hybridizing cottonwood systems, the arthropod community follows a simple genetic similarity rule: genetically similar trees support more similar arthropod communities than trees that are genetically dissimilar. This relationship can be quantified with or without genetic data in Populus.

VL - 15 SN - 0962-1083 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=17054514&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 13 ER -