TY - JOUR T1 - Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. JF - New Phytologist Y1 - 2018 A1 - Patterson, A.M. A1 - Flores-Rentería, L. A1 - A.V. Whipple A1 - Whitham, T.G. A1 - Gehring, C.A. AB -

The interactions among climate change, plant genetic variation and fungal mutualists are poorly understood, but probably important to plant survival under drought. We examined these interactions by studying the ectomycorrhizal fungal (EMF) communities of pinyon pine seedlings (Pinus edulis) planted in a wildland ecosystem experiencing two decades of climate change‐related drought We established a common garden containing P. edulis seedlings of known maternal lineages (drought tolerant, DT; drought intolerant, DI), manipulated soil moisture and measured EMF community structure and seedling growth. Three findings emerged: EMF community composition differed at the phylum level between DT and DI seedlings, and diversity was two‐fold greater in DT than in DI seedlings. EMF communities of DT seedlings did not shift with water treatment and were dominated by an ascomycete, Geopora sp. By contrast, DI seedlings shifted to basidiomycete dominance with increased moisture, demonstrating a lineage by environment interaction. DT seedlings grew larger than DI seedlings in high (28%) and low (50%) watering treatments. These results show that inherited plant traits strongly influence microbial communities, interacting with drought to affect seedling performance. These interactions and their potential feedback effects may influence the success of trees, such as P. edulis, in future climates.

VL - 221 UR - https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15352 IS - 1 ER - TY - JOUR T1 - Climate change perils for dioecious plant species. JF - Nature Plant 16109 Y1 - 2016 A1 - KR Hultine A1 - Grady,KC A1 - Wood,TE A1 - SM Shuster A1 - Stella,JC A1 - TG Whitham VL - 109 IS - 2 N1 - [Original String]:Hultine, K. R., Grady, K. C., Wood, T. E., Shuster, S. M., Stella, J. C. and Whitham, T.G. (2016). Climate change perils for dioecious plant species. Nature Plant, 109 (2): 16109. ER - TY - JOUR T1 - Conservative leaf economic traits correlate with fast growth of genotypes of a foundation riparian species near the thermal maximum extent of its geographic range . JF - Functional Ecology Y1 - 2013 A1 - Grady,KC A1 - Laughlin,DC A1 - Ferrier,SM A1 - TE Kolb A1 - Hart,SC A1 - GJ Allan A1 - TG Whitham VL - 27 N1 - [Original String]:Grady KC, Laughlin DC, Ferrier SM, Kolb TE, Hart SC, Allan GJ, Whitham TG. 2013. Conservative leaf economic traits correlate with fast growth of genotypes of a foundation riparian species near the thermal maximum extent of its geographic range . Functional Ecology 27:427-438. ER - TY - JOUR T1 - Community specificity: life and afterlife effects of genes. JF - Trends in plant science Y1 - 2012 A1 - Whitham,Thomas G A1 - Gehring,Catherine A A1 - Lamit,Louis J A1 - Wojtowicz,Todd A1 - Evans,Luke M A1 - Keith,Arthur R A1 - Smith,David Solance KW - Animals KW - Arthropods KW - Biological Evolution KW - Ecosystem KW - Genotype KW - Herbivory KW - Host-Parasite Interactions KW - Models, Biological KW - Plants KW - Species Specificity AB -

Community-level genetic specificity results when individual genotypes or populations of the same species support different communities. Our review of the literature shows that genetic specificity exhibits both life and afterlife effects; it is a widespread phenomenon occurring in diverse taxonomic groups, aquatic to terrestrial ecosystems, and species-poor to species-rich systems. Such specificity affects species interactions, evolution, ecosystem processes and leads to community feedbacks on the performance of the individuals expressing the traits. Thus, genetic specificity by communities appears to be fundamentally important, suggesting that specificity is a major driver of the biodiversity and stability of the world's ecosystems.

VL - 17 SN - 1360-1385 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=22322002&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 5 ER - TY - JOUR T1 - A conditional trophic cascade: birds benefit faster growing trees with strong links between predators and plants. JF - Ecology Y1 - 2010 A1 - Bridgeland,William T A1 - Beier,Paul A1 - Kolb,Thomas A1 - Whitham,Thomas G KW - Animals KW - Birds KW - Food Chain KW - Insecta KW - Predatory Behavior KW - Time Factors KW - Trees AB -

Terrestrial systems are thought to be organized predominantly from the bottom-up, but there is a growing literature documenting top-down trophic cascades under certain ecological conditions. We conducted an experiment to examine how arthropod community structure on a foundation riparian tree mediates the ability of insectivorous birds to influence tree growth. We built whole-tree bird exclosures around 35 mature cottonwood (Populus spp.) trees at two sites in northern Utah, USA, to measure the effect of bird predation on arthropod herbivore and predator species richness, abundance, and biomass, and on tree performance. We maintained bird exclosures over two growing seasons and conducted nondestructive arthropod surveys that recorded 63652 arthropods of 689 morphospecies representing 19 orders. Five major patterns emerged: (1) We found a significant trophic cascade (18% reduction in trunk growth when birds were excluded) only at one site in one year. (2) The significant trophic cascade was associated with higher precipitation, tree growth, and arthropod abundance, richness, and biomass than other site-year combinations. (3) The trophic cascade was weak or not evident when tree growth and insect populations were low apparently due to drought. (4) Concurrent with the stronger trophic cascade, bird predation significantly reduced total arthropod abundance, richness, and biomass. Arthropod biomass was 67% greater on trees without bird predation. This pattern was driven largely by two herbivore groups (folivores and non-aphid sap-feeders) suggesting that birds targeted these groups. (5) Three species of folivores (Orthoptera: Melanoplus spp.) were strong links between birds and trees and were only present in the site and the year in which the stronger trophic cascade occurred. Our results suggest that this trophic system is predominately bottom-up driven, but under certain conditions the influence of top predators can stimulate whole tree growth. When the most limiting factor for tree growth switched from water availability to herbivory, the avian predators gained the potential to reduce herbivory. This potential could be realized when strong links between the birds and plant, i.e., species that were both abundant herbivores and preferred prey, were present.

VL - 91 SN - 0012-9658 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=20380198&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 1 ER - TY - JOUR T1 - Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. JF - Evolution; international journal of organic evolution Y1 - 2006 A1 - Shuster,S M A1 - E V Lonsdorf A1 - Wimp,G M A1 - JK Bailey A1 - Whitham,T G KW - Animals KW - Arthropods KW - Computer Simulation KW - Environment KW - Evolution, Molecular KW - Genetic Variation KW - North America KW - Phenotype KW - Populus KW - Selection, Genetic KW - Trees AB -

The evolutionary analysis of community organization is considered a major frontier in biology. Nevertheless, current explanations for community structure exclude the effects of genes and selection at levels above the individual. Here, we demonstrate a genetic basis for community structure, arising from the fitness consequences of genetic interactions among species (i.e., interspecific indirect genetic effects or IIGEs). Using simulated and natural communities of arthropods inhabiting North American cottonwoods (Populus), we show that when species comprising ecological communities are summarized using a multivariate statistical method, nonmetric multidimensional scaling (NMDS), the resulting univariate scores can be analyzed using standard techniques for estimating the heritability of quantitative traits. Our estimates of the broad-sense heritability of arthropod communities on known genotypes of cottonwood trees in common gardens explained 56-63% of the total variation in community phenotype. To justify and help interpret our empirical approach, we modeled synthetic communities in which the number, intensity, and fitness consequences of the genetic interactions among species comprising the community were explicitly known. Results from the model suggest that our empirical estimates of broad-sense community heritability arise from heritable variation in a host tree trait and the fitness consequences of IGEs that extend from tree trait to arthropods. When arthropod traits are heritable, interspecific IGEs cause species interactions to change, and community evolution occurs. Our results have implications for establishing the genetic foundations of communities and ecosystems.

VL - 60 SN - 0014-3820 UR - http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related%20Articles&IdsFromResult=16817539&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSumhttp://www.ncbi. IS - 5 ER -